Using SPSS for Windows and Macintosh
This book is dedicated to our parents and to our children.
Brief Contents

Unit 1 Getting Started with SPSS 1
Unit 2 Creating and Working with Data Files 21
Unit 3 Working with Data 45
Unit 4 Working with SPSS Graphs and Output for Windows 59
Unit 5 Creating Variables and Computing Descriptive Statistics 86
Unit 6 t Test Procedures 116
Unit 7 Univariate and Multivariate Analysis-of-Variance Techniques 130
Unit 8 Correlation, Regression, and Discriminant Analysis Procedures 186
Unit 9 Scaling Procedures 226
Unit 10 Nonparametric Procedures 252
Contents

Preface xiii
Acknowledgments xvi
About the Authors xvii

Unit 1 Getting Started with SPSS 1
Lesson 1 Starting SPSS 2
Lesson 2 The SPSS Main Menus and Toolbar 5
Lesson 3 Using SPSS Help 10
Lesson 4 A Brief SPSS Tour 12

Unit 2 Creating and Working with Data Files 21
Lesson 5 Defining Variables 21
Lesson 6 Entering and Editing Data 26
Lesson 7 Inserting and Deleting Cases and Variables 30
Lesson 8 Selecting, Copying, Cutting, and Pasting Data 32
Lesson 9 Printing and Exiting an SPSS Data File 35
Lesson 10 Exporting and Importing SPSS Data 37

Unit 3 Working with Data 45
Lesson 12 Finding Values, Variables, and Cases 45
Lesson 13 Recoding Data and Computing Values 48
Lesson 14 Sorting, Transposing, and Ranking Data 51
Lesson 15 Splitting and Merging Files 54

Unit 4 Working with SPSS Graphs and Output for Windows 59
Lesson 16A Creating an SPSS Graph 60
Lesson 16B Creating an SPSS Chart 63
Lesson 17A Enhancing SPSS Graphs 66
Lesson 17B Enhancing SPSS Charts 72
Lesson 18A Using the Viewer and Pivot Tables 77

10.2: Exporting Data 37
10.3: Importing Data 40
Lesson 11 Validating SPSS Data 41
11.1: Validating a Data Set 41
11.2: Loading the Predefined Rules 41
11.3: Using a Single-Variable Rule 43

Lesson 12 Finding Values, Variables, and Cases 45
12.1: Finding Things 45
Lesson 13 Recoding Data and Computing Values 48
13.1: Recoding Data 48
13.2: Computing Values 49
Lesson 14 Sorting, Transposing, and Ranking Data 52
14.1: Sorting Data 52
14.2: Transposing Cases and Variables 53
14.3: Assigning Ranks to Data 54
Lesson 15 Splitting and Merging Files 55
15.1: Splitting Files 55
15.2: Merging Files 55

Lesson 16A Creating an SPSS Graph 60
16A.1: Creating a Simple Graph 60
16A.2: Different SPSS Graphs 62
Lesson 16B Creating an SPSS Chart 63
16B.1: Creating a Simple Chart 63
16B.2: Different SPSS Charts 65
Lesson 17A Enhancing SPSS Graphs 66
17A.1: Modifying a Chart 66
17A.2: Setting Chart Preferences 71
17A.3: A Few More Things 72
17A.4: Using a Chart Template and Creating an APA-Style Graph 72
Lesson 17B Enhancing SPSS Charts 73
17B.1: Modifying a Chart 73
Lesson 18A Using the Viewer and Pivot Tables 77
18A.1: Saving Viewer Output 78
18A.2: To Selectively Show and Hide Results 78
18A.3: Printing the Contents of the Viewer Window 79
18A.4: Printing a Selection from the Viewer Window 79
18A.5: Deleting Output 79
18A.6: Moving Output 79
Lesson 18B Using the Viewer
18B.1: Saving Viewer Output
18B.2: To Selectively Show and Hide Results
18B.3: Printing the Contents of the Viewer Window
18B.4: Deleting Output
18B.5: Moving Output

Unit 5 Creating Variables and Computing Descriptive Statistics

Lesson 19 Creating Variables
19.1: Applications for Creating Variables
19.2: The Data Set
19.3: Creating Variables

Lesson 20 Univariate Descriptive Statistics for Qualitative Variables
20.1: Applications for Describing Qualitative Variables
20.2: Understanding Descriptive Statistics for Qualitative Variables
20.3: The Data Set
20.4: The Research Question
20.5: Conducting Descriptive Statistics for Qualitative Variables
20.6: Using SPSS Graphs to Display the Results
20.7: An APA Participants Section

Lesson 21 Univariate Descriptive Statistics for Quantitative Variables
21.1: Applications for Describing Quantitative Variables
21.2: Understanding Descriptive Statistics for Quantitative Variables
21.3: The Data Set
21.4: Conducting Descriptive Statistics for Quantitative Variables
21.5: Using SPSS Graphs to Display the Results
21.6: An APA Participants Section
21.7: Creating Figures in APA Format
21.8: Creating Tables in APA Format

Unit 6 t Test Procedures

Lesson 22 One-Sample t Test
22.1: Applications of the One-Sample t Test
22.2: Understanding the One-Sample t Test
22.3: The Data Set
22.4: The Research Question
22.5: Conducting a One-Sample t Test
22.6: Using SPSS Graphs to Display the Results
22.7: An APA Results Section
22.8: Writing an APA Results Section

Lesson 23 Paired-Samples t Test
23.1: Applications of the Paired-Samples t Test
23.2: Understanding the Paired-Samples t Test
23.3: The Data Set
23.4: The Research Question
23.5: Conducting a Paired-Samples t Test
23.6: Using SPSS Graphs to Display the Results
23.7: An APA Results Section
23.8: Alternative Analyses

Lesson 24 Independent-Samples t Test
24.1: Applications of the Independent-Samples t Test
24.2: Understanding the Independent-Samples t Test
24.3: The Data Set
24.4: The Research Question
24.5: Conducting an Independent-Samples t Test
24.6: Using SPSS Graphs to Display the Results
24.7: An APA Results Section
24.8: Alternative Analyses

Unit 7 Univariate and Multivariate Analysis-of-Variance Techniques

Lesson 25 One-Way Analysis of Variance
25.1: Applications of One-Way ANOVA
25.2: Understanding One-Way ANOVA
25.3: The Data Set
25.4: The Research Question
25.5: Conducting a One-Way ANOVA
25.6: Using SPSS Graphs to Display the Results
25.7: An APA Results Section
25.8: Writing an APA Results Section
25.9: Alternative Analyses

Lesson 26 Two-Way Analysis of Variance
26.1: Applications of Two-Way ANOVA
26.2: Understanding Two-Way ANOVA
26.3: The Data Set
26.4: The Research Question
26.5: Conducting a Two-Way ANOVA
26.6: Conducting Follow-up Analyses to a Significant Main Effect
26.7: Conducting Follow-up Analyses to a Significant Interaction
26.8: Using SPSS Graphs to Display Results
26.9: Two APA Results Sections

Lesson 27 One-Way Analysis of Covariance
27.1: Applications of the One-Way ANCOVA
27.2: Understanding One-Way ANCOVA
27.3: The Data Set
27.4: The Research Question
Lesson 28 One-Way Multivariate Analysis of Variance

Lesson 29 One-Way Repeated-Measures Analysis of Variance

Lesson 30 Two-Way Repeated-Measures Analysis of Variance

Unit 8 Correlation, Regression, and Discriminant Analysis Procedures

Unit 9 Scaling Procedures
Lesson 37 Internal Consistency Estimates of Reliability
37.1: Applications of Internal Consistency Estimates of Reliability 235
37.2: Understanding Internal Consistency Estimates of Reliability 236
37.3: The Data Set 237
37.4: The Research Question 237
37.5: Conducting a Reliability Analysis 237
37.6: Using SPSS Graphs to Display the Results 239
37.7: An APA Results Section 239

Lesson 38 Item Analysis Using the Reliability Procedure
38.1: Applications of Item Analysis 241
38.2: Understanding Item Analysis 242
38.3: The Data Set 242
38.4: The Research Question 243
38.5: Conducting Item Analyses 243
38.6: Using SPSS Graphs to Display the Results 247
38.7: Two APA Results Sections 247
38.8: Alternative Analyses 250

Unit 10 Nonparametric Procedures 252

Lesson 39 Binomial Test
39.1: Applications of the Binomial Test 253
39.2: Understanding the Binomial Test 254
39.3: The Data Set 255
39.4: The Research Question 255
39.5: Conducting a Binomial Test 255
39.6: Using SPSS Graphs to Display the Results 256
39.7: An APA Results Section 256
39.8: Alternative Analyses 256

Lesson 40 One-Sample Chi-Square Test
40.1: Applications of the One-Sample Chi-Square Test 258
40.2: Understanding the One-Sample Chi-Square Test 259
40.3: The Data Set 259
40.4: The Research Question 260
40.5: Conducting a One-Sample Chi-Square Test 260
40.6: Using SPSS Graphs to Display the Results 261
40.7: An APA Results Section 262
40.8: Alternative Analyses 262

Lesson 41 Two-Way Contingency Table Analysis Using Crosstabs
41.1: Applications of a Two-Way Contingency Table Analysis 263
41.2: Understanding a Two-Way Contingency Table Analysis 264
41.3: The Data Set 264
41.4: The Research Question 265
41.5: Conducting a Two-Way Contingency Table Analysis 265
41.6: Using SPSS Graphs to Display the Results 268
41.7: An APA Results Section 269

Lesson 42 Two Independent-Samples Test: The Mann-Whitney U Test
42.1: Applications of the Mann-Whitney U Test 270
42.2: Understanding the Mann-Whitney U Test 270
42.3: The Data Set 271
42.4: The Research Question 272
42.5: Conducting a Mann-Whitney U Test 272
42.6: Using SPSS Graphs to Display the Results 272
42.7: An APA Results Section 273
42.8: Alternative Analyses 273

Lesson 43 K Independent-Samples Tests: The Kruskal-Wallis and the Median Tests
43.1: Applications of the Kruskal-Wallis and the Median Tests 274
43.2: Understanding the Kruskal-Wallis and Median Test 274
43.3: The Data Set 276
43.4: The Research Question 276
43.5: Conducting a K Independent-Samples Test 276
43.6: Using SPSS Graphs to Display the Results 280
43.7: Two APA Results Sections 280
43.8: Alternative Analyses 281

Lesson 44 Two Related-Samples Tests: The McNemar, the Sign, and the Wilcoxon Tests
44.1: Applications of the McNemar, Sign, and Wilcoxon Tests 282
44.2: Understanding the McNemar, Sign, and Wilcoxon Tests 282
44.3: The Data Set 283
44.4: The Research Question 285
44.5: Conducting Tests for Two Related Samples 285
44.6: Using SPSS Graphs to Display Results 286
44.7: Three APA Results Sections 286
44.8: Alternative Analyses 287

Lesson 45 K Related-Samples Tests: The Friedman and the Cochran Tests
45.1: Applications of the Cochran and Friedman Tests 288
45.2: Understanding the Cochran and Friedman Tests 289
45.3: The Data Set 290
45.4: The Research Question 290
45.5: Conducting K Related-Samples Tests 290
45.6: Using SPSS Graphs to Display Results 292
45.7: Two APA Results Sections 293

Appendix A Data for Crab Scale and Teacher Scale 294
Appendix B Methods for Controlling Type I Error across Multiple Hypothesis Tests 296
Appendix C Selected Answers to Lesson Exercises 298

References 314
Index 315
Preface

It’s our pleasure to be part of the eighth edition of *Using SPSS for Windows and Macintosh: Analyzing and Understanding Data*. Our objective has been to make each revision of our book more accessible and readable, so that readers can properly conduct statistical analyses with SPSS and make appropriate interpretations of the obtained results.

The development of easy-to-use statistical software like SPSS has changed the way statistics is being taught and learned. No longer do students have to learn a system of elaborate code to conduct simple or complex analyses. Instead, students simply enter their data into the easy-to-use Data Editor. They can then select items from a drop-down menu to make appropriate transformations of variables, click options from another menu to create graphs of distributions of variables, select among various statistical analyses by clicking on appropriate options, and more. With a minimal amount of time and effort, the output is displayed, showing the results.

Researchers also have benefited from applications like SPSS. They do not have to spend time reacquainting themselves with the ins and outs of a statistical software package or learning new programs for conducting analyses that take hours to master. They also do not have to teach assistants how to write code to produce analyses, or examine and reexamine code that has produced error messages that do not really indicate what is wrong. Everyone can just point and click. More sophisticated users can use the syntax features.

In general, programs like SPSS have made life easier for students who are learning statistics, for teachers who are teaching statistics, and for researchers who are applying statistics. Nevertheless, many users of these programs find “doing statistics” an arduous, unenjoyable task. They still are faced with many potential obstacles, and they feel overwhelmed and stressed rather than challenged and excited about the potential for mastering these important skills.

What are some of the obstacles that students, in particular, face when they are trying to conduct statistical analyses with SPSS?

- **Obstacle 1:** Although SPSS is easy to use, many students and first-time users find it very complex. They have to learn how to input data into the Data Editor, save and retrieve data, make transformations to data, conduct analyses, manipulate output, create graphs, edit graphs, and so on.
- **Obstacle 2:** Students can feel helpless. Although they know how to point and click, they are frequently confronted with new dialog boxes with many decisions to make. Their instructor does not have the time to talk about each of the options, so students feel as if they are making uninformed decisions.
- **Obstacle 3:** The amount of output and numbers produced by any statistical procedure is enough to cower most researchers if they are forced to explain their meaning. How can students who are taking statistics for the first time feel confident about interpreting output from an SPSS procedure? In trying to understand output, they are likely to face language problems. For example, “What is a significant F value? Is it the same as the p value that the instructor is talking about? No, it couldn’t be, or she or he would have told us.”

Researchers, graduate students, and more advanced undergraduate students are going to face additional obstacles.

- **Obstacle 4:** Users can think of a number of different ways to analyze their data, but they are unsure about which way would yield the most understanding of their results and not violate the assumptions underlying the analyses.
- **Obstacle 5:** Even if users make all good decisions about statistical approaches and understand the output, they still must write a Results section that conforms to the American Psychological Association (APA) format.

Using SPSS for Windows and Macintosh: Analyzing and Understanding Data for Version 23 of SPSS helps readers overcome all of the obstacles discussed earlier. The book is divided into 10 units, which are as follows:

Units 1 to 4 guide students through the most basic of SPSS techniques and use a step-by-step description to master such techniques.

Unit 1, “Getting Started with SPSS,” shows the student how to get started using SPSS, including a survey of the main menus, a description of how to use SPSS Help, and a brief tour of what SPSS can do.

Unit 2, “Creating and Working with Data Files,” goes through the steps of defining variables, showing how data are entered and edited, how to use the Data Editor and the data view screens, how to print SPSS data files, and how to import and export information to and from SPSS.

Unit 3, “Working with Data,” describes how to find and replace data, recode and compute values, sort data, and merge and split files.

Unit 4, “Working with SPSS Graphs and Output for Windows,” teaches the student how to create and enhance SPSS charts as well as how to work with SPSS output including pivot tables. SPSS Windows (version 23)
and Macintosh (version 23) differ in the way that graphics are created and edited, and, thus, there is a separate section covering each—Lesson 16A for Windows and Lesson 16B for the Macintosh. SPSS is becoming increasingly cross-platform, and if you know the Windows version, you can easily adapt to the Macintosh version (and vice versa).

Each unit from 5 through 10 presents a set of statistical techniques and a step-by-step description of how to conduct the statistical analyses. This is not, however, a “cookbook” format. We provide extensive substantive information about each statistical technique, including a brief discussion of the statistical technique under consideration, examples of how the statistic is applied, the assumptions underlying the statistic, a description of the effect size for the statistic, a sample data set that can be analyzed with the statistic, the research question associated with the data set, step-by-step instructions for how to complete the analysis using the sample data set, a discussion of the results of the analysis, a visual display of the results using SPSS graphic options, a Results section describing the results in APA format, alternative analytical techniques (when available), and practice exercises.

Unit 5, “Creating Variables and Computing Descriptive Statistics,” shows how to create new variables from existing ones and discusses the basic procedures for describing qualitative and quantitative variables.

Unit 6, “t Test Procedures,” focuses on comparing means and shows how to use a variety of techniques, including independent and dependent t tests and the one-sample t test.

Unit 7, “Univariate and Multivariate Analysis-of-Variance Techniques,” focuses on the family of analysis-of-variance techniques, including one-way and two-way analyses of variance, analysis of covariance, and multivariate analysis of variance.

Unit 8, “Correlation, Regression, and Discriminant Analysis Procedures,” includes simple techniques such as bivariate correlational analysis and bivariate regression analysis, as well as more complex analyses such as partial correlational analysis, multiple linear regression, and discriminant analysis.

Unit 9, “Scaling Procedures,” focuses on factor analysis, reliability estimation, and item analysis.

Unit 10, “Nonparametric Procedures,” discusses a variety of nonparametric techniques, including such tests as the binomial, one-sample chi-square, Kruskal-Wallis, McNemar, Friedman, and Cochran tests.

New to This Edition

Version 23 of SPSS for Windows and the Macintosh offers additional features of great value. For more details about these features, refer to the SPSS Web site http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype%3DPM%26subtype%3DSP%26htmlfid%3DYSYD03023USEN.

This eighth edition of Using SPSS for Windows and Macintosh includes the following changes:

• Revisions to instructions have been made to ensure they are consistent with the latest version of SPSS.
• New exercises have been added to the end of lessons.
• Revisions to statistical information have been made to make it more accessible to readers.

Also, please note the following:

• While this edition of Using SPSS for Windows and Macintosh focuses on version 23, the material within the chapters is directly applicable to other versions of SPSS as well. In other words, version 23 is backward compatible with most earlier versions of SPSS. While there may be some slight differences, and earlier versions offer fewer features, the user should have no difficulty adapting these materials to the version he or she has available.

Please note that SPSS is developed and owned by IBM and is formally referred to as IBM SPSS Statistics.

Online Data Files

All the data files that you will need to work through the lessons in Using SPSS for Windows and Macintosh are available on the Web through the instructor. You can request your instructors for the same who can download and distribute the data files from the Pearson’s website at http://www.pearsonhighered.com. Several data sets—particularly, Crab Scale Results and Teacher Scale Results—will be introduced as you work through the first 18 lessons. A detailed description of these two files is provided in Appendix A.

There are two more types of data sets used in the later units. The first are data files that may be used when learning particular SPSS procedures, such as paired-samples, t test, or factor analysis. Any of these files can be easily identified since they are named, for example, Lesson 23 Data File 1 or Lesson 36 Data File 1. Also used in the second half of the book are data files for completing exercises at the end of lessons. These are named, for example, Lesson 23 Exercise File 1 or Lesson 36 Exercise File 2.

Please note that the Web site does not contain any executable SPSS data files. You need to have access to SPSS to use these files, as most users of this book will, at the school, company, or other institution. SPSS (at http://www.ibm.com/analytics/us/en/technology/spss/) offers a wide price range packages, including those for students.

Other Features of The Book

LEARNING OBJECTIVES At the beginning of each unit, you will see a list of objectives—skills that you will master when you successfully complete the content of the lesson and work through all of the exercises in the lesson. These advanced objectives indicate what you can expect, and what is expected of you.
TYING CONVENTIONS There is only one typing convention you must attend to throughout this book. A sequence of actions is represented by what options are selected from what menu, connected by an arrow like this →.

For example, if a certain procedure requires clicking on the File menu and then clicking the New option, it would be represented as follows.

1. Click File → New.

EXAMPLES Each lesson includes step-by-step procedures, with copious illustrations of screen shots, for successfully completing a technique with sample data. Exercises at the end of each lesson allow you to practice what you have learned.

TIPS Some of the lessons contain tips (in the margins) that will help you learn SPSS and will teach you shortcuts that make SPSS easier to use.

System Requirements for SPSS 23
for Windows

If you are using SPSS 23 for Windows, then your system must meet the following minimal requirements:

• Microsoft Windows, Windows 7, and Windows 8 and 10 (plus Windows Server)
• Intel or AMD processor running at 1 gigahertz (GHz) or higher.
• 4 gigabytes (GB) of RAM or more.
• 2 gigabytes of available hard-disk space. If you install more than one help language, each additional language requires 60–70 MB of disk space.
• DVD/CD drive (unless downloaded online).
• 1024 x 768 or a higher-resolution monitor.

System Requirements for SPSS 23
for Mac OS X

If you are using SPSS 23 for Macintosh, then your system must meet the following minimal requirements:

• Mac OS® X 10.10 or higher (Yosemite).
• Intel processor.
• 4 gigabytes (GB) of RAM or more.
• 2 gigabytes of available hard-disk space. If you install more than one help language, each additional language requires 60–70 MB of disk space.
• DVD/CD drive.
• 1024 x 768 or a higher-resolution monitor.

Version 23 for both Windows and the Macintosh are virtually identical. The same differences in keystrokes that apply between the operating systems also apply for the use of SPSS. For example, to select all the files listed in a dialog box in the Mac version, use the Command (also known as the Apple key) + A key combination. For Windows, it’s the CTRL+A key combination.
Acknowledgments

No book is ever the work of only the authors. Using SPSS for Windows and Macintosh was first contracted with Chris Cardone, whom we would like to thank for giving us the opportunity to undertake the project. Chris remains a good colleague and a better friend.

We would like to thank the many instructors and students who have contacted us about the book. We have very much appreciated your positive comments and your constructive suggestions.

Thank you for using this book. We hope it makes your SPSS activities easy to learn, fun to use, and helpful. Should you have any comments about the book (good, bad, or otherwise), feel free to contact us at the e-mail addresses listed below.

Samuel B. Green
samgreen@asu.edu

Neil J. Salkind
njs@ku.edu
About the Authors

SAM GREEN is Professor in the T. Denny Sanford School of Social and Family Dynamics at the Arizona State University. He teaches undergraduate and graduate courses in statistics for students in the behavioral sciences. He conducts research primarily in the areas of structural equation modeling, multivariate analyses of means, exploratory factory analysis, measurement invariance, analysis of item data, and reliability. He is currently on the editorial boards of Structural Equation Modeling: A Multidisciplinary Journal, Psychological Methods, Educational and Psychological Measurement, and Journal of Counseling Psychology. He is also a past chair of the Structural Equation Modeling Special Interest Group of the American Educational Research Association.

Sam has a wonderful wife, Marilyn Thompson, and three terrific daughters, Julie, Sarah, and Leah. He enjoys playing with his grandchildren. To relax, he likes to run, read novels, eat good food, travel, and get together with friends.

NEIL J. SALKIND received his Ph.D. from the University of Maryland in Human Development and is Professor Emeritus in the Department of Educational Psychology at the University of Kansas. He was a postdoctoral fellow at the University of North Carolina’s Bush Center for Child and Family Policy. He has published more than 150 professional papers and presentations, has written more than 100 trade and textbooks, including Statistics for People Who Think They Hate Statistics (Sage), Theories of Human Development (Sage), and Exploring Research (Pearson), and has edited several encyclopedias including the Encyclopedia of Human Development and the Encyclopedia of Measurement and Statistics. He was the editor of Child Development Abstracts and Bibliography.

Neil has a wonderful wife, Leni, and three terrific children, Sara, Micah, and Ted. To relax, he likes to letterpress print using equipment dating back to Karl Pearson, read, swim with the River City Sharks, bake brownies (see the recipe at www.statisticsforpeople.com), and poke around old Volvos and old houses.